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Abstract
Purpose Alzheimer’s disease (AD) is the most common type of dementia, and its early diagnosis has become a crucial 
issue. Machine learning provides a systematic and objective approach in classification. Currently, there are many studies 
using several kinds of neuroimaging modalities to perform classification in dementia. Support vector machine (SVM) is 
one of machine learning based classification algorithm which is able to retain favorable classification accuracy even with 
small sample sizes. Our aim is to investigate the feasibility of using dual PET biomarkers in combination with SVM for AD 
diagnosis in small sample sizes.
Methods This study collected PET (18F-FDG and 11C-PiB) and T1 MRI image of 79 subjects from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database, including 20 AD, 27 mild cognitive impairment (MCI) subjects, and 32 normal 
controls (NCs), and performed classification using the SVM algorithm with the quantification of the two PET biomarkers, 
and finally compared the classification results of each brain region.
Results In the classification between diseased (AD and MCI) and NC group, we found that the accuracy, sensitivity and 
specificity mean in temporal cortex are the highest.
Conclusions Overall, using dual PET biomarkers in combination with SVM shows a certain feasibility and clinical value in 
the diagnosis of AD, especially in the temporal cortex.
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1 Introduction

Alzheimer’s disease (AD) is the most popular type of 
dementia, and it is a neurodegenerative disease with a slow 
onset course and a progressive deterioration over time, 
which eventually causes death [1]. Early signs of the disease 
include significant memory deterioration and difficulties in 
the determination of time, place, and people; occurrence 
of interference behaviors; change in personality; and delu-
sional hallucinations that can even affect activities of daily 
life and ability for self-care. The disease causes increasing 
need for care in the patient and can put a great burden on 
the caretaker. Therefore, the early diagnosis of AD is an 
important issue [2, 3]. According to the diagnostic criteria 
for AD set by the National Institute on Aging-Alzheimer’s 
Association, the PET biomarker commonly used in the diag-
nosis of AD can be classified into two categories. The first 
type is the imaging of beta-amyloid protein deposition in 
the brain, such as the 11C-Pittsburgh compound B (PiB) [4]. 
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According to previous findings, there is more beta-amyloid 
protein deposition in the brains of most patients with AD 
compared with a normal person. Because 11C-PiB can bind 
to the beta-amyloid proteins deposited in the brain, it can be 
used for the diagnosis of AD [5–7]. The second type is the 
imaging of the brain metabolic function, such as 18F-fluoro-
deoxyglucose (FDG) [8]. In patients with AD, the brain met-
abolic functions are decreased due to damage of brain nerve 
cells. Because 18F-FDG can reflect the glucose metabolism 
condition of the brain, the distribution of hypometabolism 
seen in the 18F-FDG image of patients with AD can be used 
for disease severity evaluation and diagnosis [7, 9–12].

AD is a progressively deteriorating disease. Beta-amy-
loid protein deposition in the brain gradually increases 
before and during the onset of the disease, lasting for up 
to 19 years, and the brain metabolic function decreases, 
gradually [13, 14]. Current consensus is that during the 
period of transformation from the normal stage to the 
AD stage, there is an in-between stage of mild cognitive 
impairment (MCI) [15, 16]. Every year, approximately 
15% of those in the MCI stage transform to AD; in com-
parison, the proportion of those who transform directly 
from the normal stage to the AD stage is only 1–2% [16, 
17]. In 11C-PiB imaging, it can be observed that there is 
a gradually increasing trend of activity uptake during the 
stages of transformation. Conversely, in 18F-FDG imaging, 
activity uptake gradually decreases during the stages of 
transformation due to the increasing severity of hypome-
tabolism [18]. Most aforementioned studies have focused 
on a single biomarker. Because the two biomarkers pos-
sess different and even complimentary characteristics, it 
is evident that the combination of the results of the two 
biomarkers can provide even more detailed information for 
early diagnosis of AD [19, 20], and can enable us to fur-
ther understand the image pattern of the disease. Addition-
ally, because the two biomarkers (11C-PiB and 18F-FDG) 
can provide complementary information, we can therefore 
utilize machine learning based classification algorithms 
to perform prediction and diagnosis. Currently, there are 
many studies using several types of neuroimaging modali-
ties to perform dementia classification [21–30]. Among 
these, the most commonly used algorithm is the support 
vector machine (SVM). In comparison with other algo-
rithms (such as neural networks), SVM is able to retain 
favorable classification accuracy even with small sample 
sizes [31]. Most aforementioned studies have focused on 
magnetic resonance imaging (MRI), but studies about PET 
(particularly 11C-PiB) are rare. In addition, those stud-
ies mostly focus on the classification results of the entire 
brain, and lack in the exploration of that regarding each of 
the brain regions. In the present study, we collected 11C-
PiB and 18F-FDG images from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.

edu), performed classification using the SVM algorithm 
with the quantitative analysis results of the two biomark-
ers, and finally compared and analyzed the classification 
results in accordance with each brain region. We thus 
evaluated the feasibility of the application of the SVM 
classification algorithm in 11C-PiB and 18F-FDG images 
of limited subjects, and found the region most suitable for 
AD prediction and diagnosis, thereby providing a refer-
ence for AD diagnosis and increasing the early AD diag-
nostic accuracy.

2  Materials and Methods

2.1  ADNI Data and Subject Characteristics

All data for research used in this study came from the 
ADNI database (https ://www.adni.loni.usc.edu), which 
is established by the National Institute on Aging (NIA), 
National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), Food and Drug Administration (FDA), private 
pharmaceutical companies, and non-profit organizations. 
The primary objective of ADNI is to test for whether serial 
MRI, PET, other biomarkers, and clinical and neuropsycho-
logical evaluations can be used in combination to measure 
for MCI and early AD disease course. Confirmation of the 
sensitivity and specificity of biomarkers for early AD pro-
gression can help researchers and clinical physicians in the 
development of new treatment methods and monitor its effi-
cacy, and can even reduce the time and cost of clinical tri-
als. This study collected data of 56 subjects from the ADNI 
database (40 males, 39 females), including 20 AD subjects, 
27 MCI subjects, and 32 normal controls (NCs). Related 
information on the subjects is summarized in Table 1. T1 
MRI, FDG-PET, and PiB-PET imaging were performed on 
all subjects, with less than 1-month interval between the two 
PET imaging scans and less than 3-month interval between 
PET and MRI. The pulse sequence used for T1 MRI was 
MPRAGE, and the purpose of MRI imaging in this study 

Table 1  Subject characteristics

Age and mini-mental state examination (MMSE) score are given as 
mean ± standard deviation
MCI mild cognitive impairment, AD Alzheimer’s disease, NC normal 
control

AD MCI NC

n 20 27 32
Gender (M/F) 10/10 13/14 17/15
Age 72.35 ± 7.46 75.96 ± 6.02 75.34 ± 8.15
MMSE 21.70 ± 5.06 25.22 ± 4.06 28.18 ± 1.59

https://www.adni.loni.usc.edu
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was anatomical spatial normalization [32] and volume-of-
interest (VOI) selection.

2.2  Image Acquisition and Scanning Protocol

In the ADNI database, there are different scanning protocols 
according to different PET scanners. In this study, there were 
two protocols for FDG-PET. The first protocol performed a 
60-min dynamic scan immediately after radiotracer admin-
istration via IV injection. The second protocol waited for 30 
min of uptake after radiotracer administration via IV injec-
tion before performing a 30-min dynamic scan. In this study, 
11 subjects belonged to the first protocol, and the remaining 
88 subjects belonged to the second protocol. Additionally, 
the FDG injected dose for all subjects was 6.11 ± 1.89 mCi. 
Regarding PiB-PET, there were three protocols used in this 
study. The first protocol performed a 90-min dynamic scan 
immediately after IV injection of radiotracer, the second pro-
tocol followed the same procedure as the first but changed 
the time for dynamic scan to 70 min, and the third protocol 
waited for 50 min of uptake after IV injection of radiotracer 
before performing a 20-min dynamic scan. The first protocol 
was performed on 45 subjects, the second was performed on 
seven subjects, and the third was performed on 27 subjects. 
All subjects received an IV injection with 11C-PiB activity 
of 13.01 ± 2.83 mCi.

2.3  Image Processing Procedure

We first used the “Coregister: Estimate” module provided 
by SPM8 software (https ://www.fil.ion.ucl.ac.uk/spm/) in 
combination with default parameters to co-register the T1 
MRI to the T1 MRI template provided by SPM8 to ensure 
the AC-PC line of T1 MRI image can present a horizontal 
condition like the template does in MNI space (Montreal 
Neurological Institute space). Then, we used the “Normal-
ise: Estimate & Write” (also provided by SPM8) module 

to perform spatial normalization on the previously co-reg-
istered T1 MRI image so that its image spatial axes and 
voxel size are consistent with the standard MNI space brain 
template [33, 34]. The processed T1 MRI image is then con-
verted from the native space to the standard MNI space, 
simultaneously generating a set of standardized conversion 
parameter (*_sn.mat) for further PET image processing.

For the FDG-PET image, the summed image was 
obtained from the dynamic scans from 30 to 60 min after 
injection of radiotracer. Regarding PiB-PET, the summed 
image was obtained from the dynamic scans from 50 to 70 
min after injection of radiotracer. Then, all subjects’ PET 
images were co-registered to their corresponding co-reg-
istered MRI images, so that the two share the same spatial 
anatomical coordinates (Reference Image: co-registered 
MRI T1; Source Image: PET). Then, the “Normalize: Write” 
module was used to apply the previously generated stand-
ardized conversion parameters to the corresponding co-reg-
istered PET images (parameter file: conversion parameter; 
Images to Write: co-registered PET) to complete spatial 
normalization. At this point, the PET image is converted 
from the native space to the standard MNI space. The flow 
of image processing is shown in Fig. 1.

2.4  VOI Generation

For VOI generation, we first used the “Segment” module 
provided by SPM8 software to perform image segmenta-
tion on each spatially normalized T1 MRI image to generate 
probability maps for the three regions, namely gray matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF), 
and one segmentation parameter matrix (*_seg_sn.mat). 
Then, we used the “Automatic labeling” function provided 
by IBASPM (http://www.thoma skoen ig.ch/Leste r/ibasp 
m.htm) [35], first inputting the previously generated three 
probability maps and one segmentation parameter matrix, 
in combination with the Automated Anatomical Labeling 

Fig. 1  Flowchart of the image processing procedure

https://www.fil.ion.ucl.ac.uk/spm/
http://www.thomaskoenig.ch/Lester/ibaspm.htm
http://www.thomaskoenig.ch/Lester/ibaspm.htm
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(AAL) regional map to divide the spatially normalized MRI 
images into 119 regions [36, 37], thus generating VOIs dedi-
cated to each subject, as shown by Fig. 2.

2.5  Feature Extraction

In this study, the 119 AAL VOIs previously segmented from 
the spatially normalized T1 MRI images were combined, 
and regions commonly used for AD research according to 
past research were selected for feature extraction with FDG-
PET and PiB-PET, respectively [38–40]. The feature used 
in this study is the standardized uptake value ratio (SUVR). 
Its calculation method is the average of each VOI within 
the target region divided by the average of each VOI within 

the reference region. The target regions include the whole 
brain cortex, orbitofrontal cortex, parietal cortex, precuneus, 
temporal cortex, and posterior cingulum, and the reference 
region is the cerebellar gray matter. In consideration that 
glucose metabolism in cerebellar gray matter may differ 
among different subjects and affect the accuracy of SUVR, 
we selected pon as an additional reference region for SUVR 
calculation in FDG image for comparison. This was done 
because the aforementioned region has been proven to be 
a reference region with higher reliability in AD diagnosis, 
and can increase clinical diagnosis accuracy and significant 
differences in statistical analysis [41–43].

Fig. 2  Spatially normalized T1 MRI image for each subject condition 
with the overlay of its corresponding VOIs segmented by IBASPM. 
The top, middle, and bottom row stand for AD, MCI, and NC, respec-

tively. Each color represents a different region in automated anatomi-
cal labeling (AAL)
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2.6  SVM Analysis

SVM belongs to the supervised learning category within 
machine learning. This algorithm is commonly used to per-
form data classification. SVM considers all data points as 
an N-dimensional vector and divides the data into two cat-
egories by finding the most appropriate N-1 dimensional 
hyperplane. This hyperplane has greatest distances from 
both margins of the two classifications of data. Since SVM 
shows favorable data classification results in cases where 
numbers of training samples are small [44], currently it is 
also commonly used in clinical dementia studies.

In this study, SVM was used in the classification of dif-
ferent disease groups (i.e., AD vs. normal control and MCI 
vs. normal control) because it is suitable for limited subjects. 
Actual implementation of the algorithm in this study was 
performed with the “svmtrain” and “svmclassify” functions 
in MALAB R2011b (MathWorks Inc., Sherborn, MA), and 
radial basis function was used as the kernel function for the 
establishment of the classification model. The PiB and FDG 
SUVR of various VOIs calculated from before were used as 
features in SVM for classification. The tenfold cross valida-
tion was performed on all subjects, and data to be classified 
were divided into ten groups where nine groups were used 
for SVM training sample set, and the remaining one group 
was used for testing sample set. This procedure was repeated 
ten times, and a tenfold cross validation was considered to 
be completed when each group’s data has all been used for 
testing sample set for one time [45]. In order to obtain more 
accurate and consistent results, the study performed 50 times 
of tenfold cross validation, and calculated the accuracy, sen-
sitivity, and specificity mean for each of the regions under 
different disease group classifications.

3  Results

3.1  Statistical Test

Figure 3 shows the global (whole brain cortex, CTX) and 
regional average SUVRs of each group. There are two values 
for every region’s FDG SUVR, and each value respectively 
corresponds to the two different reference regions, which 
are cerebellar gray matter (CbG) and pon. No matter it is 
in AD, MCI, or NC group, the global and regional FDG 
SUVRs calculated using pon as the reference region were 
all greater than those calculated using CbG as the reference 
region. Additionally, the NC group had the greatest global 
and regional FDG SUVRs, followed by the MCI group, and 
lastly the AD group. In contrast, PiB SUVR shows the oppo-
site trend, with the AD group possessing the highest values, 
followed by the MCI group, and lastly the NC group.

One-tailed two-sample t test with alpha level equal 
to 0.05 was performed for the AD and MCI groups in 
comparison with the NC group. In the AD group, there 
was a significant difference (p < 0.05) in FDG SUVR 
(CbG) in the whole brain cortex and orbitofrontal cortex 
regions, a more distinct significant difference (p < 0.01) 
in the parietal cortex region, and highly significant dif-
ferences (p < 0.001) in the precuneus, temporal cortex, 
and posterior cingulum regions. Regarding FDG SUVR 
(Pon), all regions showed highly significant differences 
(p < 0.001). PiB SUVR showed a highly significant differ-
ence (p < 0.001) in the whole brain cortex, orbitofrontal 
cortex, precuneus, temporal cortex, and posterior cingu-
lum regions, with a lower significant difference (p < 0.01) 
in the parietal cortex region.

In the MCI group, FDG SUVR (CbG) only showed a 
significant difference (p < 0.05) in the temporal region. How-
ever, for FDG SUVR (Pon), there was a significant differ-
ence (p < 0.05) in the precuneus region and larger significant 
differences (p < 0.01) in the whole brain cortex, parietal, and 
posterior cingulum regions. In addition, there was a highly 
significant difference (p < 0.001) in the orbitofrontal and 
temporal regions. Regarding PiB SUVR, there were signifi-
cant differences (p < 0.05) in the orbitofrontal, precuneus, 
and posterior cingulum regions and larger significant dif-
ferences (p < 0.01) in the whole brain cortex, parietal, and 
temporal regions; but no regions showed a highly significant 
difference (p < 0.001).

3.2  SVM Analysis

Table  2 lists the accuracy mean, sensitivity mean, and 
specificity mean of each region in different disease group 
classifications calculated with SVM on FDG SUVR (CbG) 
and FDG SUVR (Pon) with PiB SUVR, which was through 
50 times of tenfold cross validations. Table 2a lists all the 
accuracy mean. For FDG SUVR (CbG) and PiB SUVR, 
the accuracy mean for the AD and NC group classifica-
tions with the whole brain cortex, orbitofrontal cortex, 
parietal cortex, precuneus, temporal cortex, and posterior 
cingulum regions were 72.18% ± 3.02%, 73.08% ± 3.47%, 
68.26% ± 2.14%, 72.38% ± 2.58%, 82.71% ± 1.37%, and 
77.10% ± 2.45%, respectively. The accuracy mean for the 
MCI and NC group classifications with each of the regions 
was 61.28% ± 3.01%, 53.00% ± 2.65%, 59.89% ± 2.36%, 
58.02% ± 2.96%, 70.05% ± 2.43%, and 62.23% ± 2.23%, 
respectively. After performing the same analysis with FDG 
SUVR (Pon) and PiB SUVR, the accuracy mean for each 
of the target regions in the AD and NC group classifica-
tions was 80.88% ± 2.93%, 73.55% ± 3.05%, 78.33% ± 
2.73%, 80.08% ± 2.21%, 86.06% ± 0.89%, and 77.68% 
± 1.44%, respectively. Regarding the MCI and NC group 
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classifications, the accuracy mean for each of the regions 
was 70.05% ± 2.10%, 66.45% ± 3.57%, 64.78% ± 1.62%, 
63.01% ± 1.68%, 80.21% ± 0.88%, and 64.97% ± 1.34%, 
respectively. Other than the accuracy mean, the sensitivity 
and specificity mean of each region in the classifications of 
different disease groups are listed in Table 2b and c.

4  Discussion

Currently, the application of PET in AD diagnosis often 
uses amyloid protein imaging (such as 11C-PiB). The fastest 
and most convenient diagnostic method is visual inspection, 
which involves evaluating disease severity though direct 
observation of the amount of amyloid protein deposition in 
the image [38, 46–49]. However, different image interpreta-
tion may occur in this method due to different physicians. 

Fig. 3  Global (CTX) and 
regional (OrbFro, Par, PC, Tem, 
PCG) group mean SUVRs: a 
FDG SUVR using cerebellar 
gray matter as reference region, 
b FDG SUVR using pon as ref-
erence region, and c PiB SUVR. 
Two samples t tests between NC 
and remaining two groups (AD 
and MCI) are presented for each 
VOI. SUVR standardized uptake 
value ratio, CTX whole brain 
cortex, OrbFro orbitofrontal, 
Par parietal, PC precuneus, Tem 
temporal, PCG posterior cingu-
lum, CbG cerebellar gray mat-
ter, Pon pon. *p < 0.05 vs. NC. 
**p < 0.01 vs. NC. ***p < 0.001 
vs. NC



551Classification of Alzheimer’s Disease from 18F-FDG and 11C-PiB PET Imaging Biomarkers Using Support Vector Machine

1 3

Therefore, this method cannot provide consistent results. 
Experiences of the physicians can also have a significant 
impact on the reliability of the diagnosis results. Another 
diagnostic method involves the calculation of a cutoff value 
using the image quantitative figure-of-merit (FOM), split-
ting the images into two groups—amyloid-positive and 
amyloid-negative. SUVR is a semi-quantitative FOM that 
is currently being widely used. There are several studies that 
use different methods to generate the cutoff value and split 
the 11C-PiB images into the two groups mentioned above 
[50–52]. However, different calculation methods for quan-
titative FOMs of each method may cause some difference 
in the cutoff value. There is current difficulty in generating 
a golden standard cutoff value to be used in image classifi-
cation and diagnosis. Additionally, even if classification is 
performed using the cutoff value, there are still other special 
conditions that may affect the diagnostic accuracy, includ-
ing a normal subject with extra amyloid protein deposition 
classified as amyloid-positive. Therefore, if a second PET 
biomarker image is generated to provide additional informa-
tion, the accuracy for diagnosis may increase. The present 

study used two PET biomarkers commonly used in AD diag-
nosis, in combination with the machine learning based clas-
sification algorithm, SVM, to perform classification of the 
subjects and evaluated the feasibility for SVM to be used in 
PET AD diagnosis through calculating the accuracy mean, 
sensitivity mean, and specificity mean.

We found that as the stage of disease goes on, the FDG 
SUVRs gradually decrease (Fig. 3), and the opposite situa-
tion was observed with the PiB SUVRs. This is consistent 
with the results of traditional research, which state that as 
the disease severity increases, the brain glucose metabolic 
function decreases, causing more and more significant 
hypometabolism in the image and further causing gradually 
decreasing FDG SUVRs. Additionally, because PiB reflects 
beta-amyloid protein deposition in the brain, the beta-amy-
loid protein deposition amount gradually increases during 
the process of transformation from a normal stage to the 
MCI stage and then into the AD stage, causing the phenom-
enon of gradually increasing PiB SUVRs. It is worth noting 
that when the pon was used as the reference region to calcu-
late the FDG SUVRs, all the values calculated were higher 

Table 2  Support vector machine analysis

Accuracy, sensitivity and specificity mean are calculated for each VOI after 50 times SVM tenfold cross validation. All the values are given as 
mean ± standard deviation.

(a)

Accuracy mean (%) CTX OrbFro Par PC Tem PCG

FDG CbG and PiB
 AD vs. NC 72.18 ± 3.02 73.08 ± 3.47 68.26 ± 2.14 72.38 ± 2.58 82.71 ± 1.37 77.10 ± 2.45
 MCI vs. NC 61.28 ± 3.01 53.00 ± 2.65 59.89 ± 2.36 58.02 ± 2.96 70.05 ± 2.43 62.23 ± 2.23

FDG Pon and PiB
 AD vs. NC 80.88 ± 2.93 73.55 ± 3.05 78.33 ± 2.73 80.08 ± 2.21 86.06 ± 0.89 77.68 ± 1.44
 MCI vs. NC 70.05 ± 2.10 66.45 ± 3.57 64.78 ± 1.62 63.01 ± 1.68 80.21 ± 0.88 64.97 ± 1.34

(b)

Sensitivity mean (%) CTX OrbFro Par PC Tem PCG

FDG CbG and PiB
 AD vs. NC 69.72 ± 6.86 74.16 ± 6.78 62.16 ± 6.94 71.11 ± 5.23 72.85 ± 3.81 77.22 ± 7.81
 MCI vs. NC 55.99 ± 5.15 49.89 ± 7.85 59.24 ± 5.88 54.11 ± 5.29 55.92 ± 6.55 55.20 ± 7.58

FDG Pon and PiB
 AD vs. NC 75.29 ± 8.39 79.28 ± 8.32 75.00 ± 4.40 83.33 ± 4.94 82.40 ± 5.00 78.50 ± 4.54
 MCI vs. NC 62.30 ± 5.52 62.11 ± 6.26 65.92 ± 5.78 54.41 ± 5.68 70.43 ± 5.97 59.66 ± 4.73

(c)

Specificity mean (%) CTX OrbFro Par PC Tem PCG

FDG CbG and PiB
 AD vs. NC 79.55 ± 5.32 69.21 ± 5.88 73.57 ± 4.96 73.75 ± 5.45 89.16 ± 4.63 75.90 ± 5.40
 MCI vs. NC 68.76 ± 5.79 55.32 ± 6.43 61.93 ± 5.53 59.23 ± 7.96 82.47 ± 4.34 69.13 ± 4.77

FDG Pon and PiB
 AD vs. NC 81.26 ± 5.42 69.32 ± 6.38 81.66 ± 5.13 77.94 ± 4.63 90.36 ± 3.00 76.52 ± 4.51
 MCI vs. NC 79.22 ± 4.53 68.64 ± 7.55 63.46 ± 7.31 70.57 ± 4.52 89.93 ± 3.72 69.84 ± 5.18
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than those of when CbG was used as the reference region. 
This shows that there is a smaller difference among sub-
jects in the FDG uptake of the pon region when compared 
with the CbG region. Owing to some of the subjects having 
uptake to a certain extent in the CbG, the FDG SUVRs were 
decreased. Therefore, using pon as the reference region to 
calculate FDG SUVR is a better choice. This region satisfies 
the consistency and low uptake requirements necessary for a 
reference region. Additionally, we also found that there was 
higher statistical difference when the pon was used as the 
reference region in comparison to when CbG was used as the 
reference region. In the two-sample t-test of the AD and NC 
groups, although both reference regions showed statistically 
significant differences, FDG SUVR (Pon) showed a more 
prominent significant difference. In the t-test for the MCI 
and NC groups, the superiority of FDG SUVR (Pon) was 
even more prominently displayed. Although FDG SUVR 
(Pon) showed decreased significance in some regions com-
pared with the previously mentioned test (AD vs. NC), the 
statistically significant standard was still met. In contrast, for 
FDG SUVR (CbG), only the temporal cortex region showed 
a significant difference. This proves again that pon, in com-
parison to CbG, is a better choice as the reference region and 
can increase the diagnostic accuracy. This can be verified 
again by the accuracy mean of the SVM classification later 
on. The characteristic of PiB as a favorable PET biomarker 
for AD diagnosis was significant in the PiB SUVR results. 
Both AD and MCI groups had significant differences in 
comparison with the NC group in statistical tests, and these 
results in combination with the aforementioned FDG SUVR 
results provide the feasibility for the application of SVM in 
AD diagnosis.

It was observed in the accuracy mean in Table 2a that the 
results calculated using pon as the reference region showed a 
higher SVM accuracy when in combination with PiB SUVR. 
This trend was observed in both the AD and NC group clas-
sifications and the MCI and NC group classifications, with 
different levels of increase in different regions. In the AD and 
NC group classifications, the increase in the parietal cortex 
was the most prominent, increasing from 68.26 to 78.33%, 
a 10.07% increase in the accuracy, with the least increase 
in the posterior cingulum, with only 0.58% increase. As for 
the classification results between the MCI and NC groups, 
the increase in the orbitofrontal cortex was most significant, 
increasing by 13% from 53 to 66%, while again the posterior 
cingulum had the least increase, which was from 62.23 to 
64.97%, with an increase of 2.74%. In addition to the accu-
racy mean, we also found in Table 2b and c that when the 
pon was used as the reference region, there were increases 
in sensitivity mean and specificity mean when results were 
calculated for the different regions between different group 
classifications. We found that in the AD and MCI groups, 
the significant differences for FDG SUVR (Pon) were more 

prominent than those for FDG SUVR (CbG) (Fig. 3), indi-
cating larger SUVR differences between normal controls and 
patients, resulting in more effective and accurate classifica-
tion of the data into the two classifications, with increases 
in the accuracy, sensitivity, and specificity mean as well. 
Additionally, in the AD and NC group classifications, we 
found that the accuracy mean for all regions was above 70%, 
some reaching 80%, and the accuracy mean for the temporal 
cortex had the excellent result of 86.06%, with sensitivity 
mean and specificity mean reaching 82.40% and 90.36%, 
respectively. For the MCI and NC group classifications, the 
accuracy mean was generally lower than the results of the 
previous classification results (AD vs. NC), where the accu-
racy calculated using CbG ranged from 50 to 70% and using 
pon ranged from 60–80%. It is noteworthy that the tempo-
ral cortex region always had the highest accuracy. This is 
because as a normal person transforms into the MCI stage, 
the brain neurological function degeneration mostly begins 
with the temporal cortex, causing the most significant SUVR 
difference in the temporal region out of all the regions dur-
ing the MCI stage, resulting in the highest accuracy. Over-
viewing everything mentioned above, FDG SUVR (Pon) is 
a better quantitative analysis FOM than FDG SUVR (CbG) 
and provides more favorable results in the application of 
SVM in AD diagnosis. There is indeed certain feasibility 
for the application of SVM in the clinical diagnosis of AD, 
particularly between the AD and NC groups. Regarding the 
classification between the MCI and NC groups, FDG SUVR 
(Pon) in combination with PiB SUVR in the temporal region 
also provided fair results.

5  Conclusions

This study used the two PET biomarkers 18F-FDG and 11C-
PiB in combination with the SVM classification algorithm 
to conduct clinical diagnosis of AD with limited subjects. 
Favorable results were obtained in the quantitative analy-
sis of FDG when using pon as the reference region, and 
a higher diagnostic accuracy was also obtained. Addition-
ally, the diagnosis of AD with SVM also appeared to have 
fairly good results in this study, particularly achieving a very 
high accuracy, sensitivity, and specificity in the temporal 
cortex region. Therefore, using the dual PET biomarkers in 
combination with SVM possesses a certain significance and 
feasibility in the clinical diagnosis of AD (particularly in the 
temporal cortex region). Future studies using other machine 
learning or deep learning classification algorithms should 
focus on the temporal cortex region to reduce data calcula-
tion during training and increase efficacy of the algorithm. 
Besides SUVR, other features or quantitative FOMs can also 
be included for more stringent classification of disease sever-
ity and staging and even for classifications above the binary 
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level (binary classification). Owing to the limited number of 
subjects in this study, the SVM classification algorithm was 
chosen. If data of more subjects are obtained in the future, 
other types of classification algorithms can also be utilized 
to perform big data analysis to further increase the diagnos-
tic accuracy. Furthermore, there are other PET radiotracers 
that also reflect amyloid protein deposition in addition to 
11C-PiB, such as 18F-AV-45, which uses 18F-labeled tracer, 
and consequently allows relatively easier drug preparation. 
We expect that the application of this radiotracer in this 
study will also achieve good results.
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